Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Clutch Coordination Control for Series-Parallel DHT Mode Changing

2022-10-28
2022-01-7046
As a newly designed hybrid transmission, DHT (Dedicated Hybrid Transmission) owns the advantages of compact structure, multi-modes and excellent comprehensive performance. Compared with the traditional add-on hybrid transmission with one single motor, DHT uses one independent generator for engine starting and speed adjusting which can be largely improve the driving performance in the mode changing process. Based on the series-parallel DHT with wet clutch for power coupling, this paper firstly analyses the power coupling clutch device functionalities from the power flow viewpoint under normal and limp home condition. And for the changing process from series to parallel mode, a clutch coordination control strategy is designed by combining generator fast speed adjusting with clutch accurately pressure controlling to fulfill the fast driver intension response and clutch protection.
Technical Paper

Improved Energy Management with Vehicle Speed and Weight Recognition for Hybrid Commercial Vehicles

2022-10-28
2022-01-7052
The driving conditions of commercial logistics vehicles have the characteristics of combined urban and suburban roads with relatively fixed mileage and cargo load alteration, which affect the vehicular fuel economy. To this end, an adaptive equivalent consumption minimization strategy (A-ECMS) with vehicle speed and weight recognition is proposed to improve the fuel economy for a range-extender electric van for logistics in this work. The driving conditions are divided into nine representative groups with different vehicle speed and weight statuses, and the driving patterns are recognized with the use of the bagged trees algorithm through vehicle simulations. In order to generate the reference SOC near the optimal values, the optimal SOC trajectories under the typical driving cycles with different loads are solved by the shooting method and the optimal slopes for these nine patterns are obtained.
Technical Paper

Comprehensively Investigating the Impact of High-Temperature Cyclic Aging on Thermal Runaway Characteristics for Lithium-Ion Batteries

2022-10-28
2022-01-7061
Battery safety issues have severely limited the rapid development and popularization of electric vehicles. Harsh conditions such as high temperature accelerate the degradation of battery safety. To address this issue, a comprehensive analysis of the impact of high-temperature cyclic aging on lithium-ion battery safety is carried out. In the Accelerating Rate Calorimeter, lithium-ion batteries are performed on adiabatic thermal runaway tests and overcharge tests. Regardless of the fully-charged state or half-charged state, in the adiabatic thermal runaway process, high-temperature cyclic aging reduces the characteristic temperature, and the activation energy from the self-heating temperature to thermal runaway triggering temperature decreases. During the overcharge process, high-temperature cyclic aging increases the voltage plateau and the crest voltage before thermal runaway, and their corresponding charging temperature decreases.
Research Report

Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles

2022-09-26
EPR2022020
Fuel cell electric vehicles (FCEVs) require multiple components to operate properly, and the fuel cell stack—the source of power—is one of the most important components. While the number of enterprises manufacturing and selling fuel cell stacks is increasing globaly year after year, the residual challenges of core components and technologies still need to be resolved in order to keep pace with the development of lithium-ion batteries (i.e., its primary competitor). Additionally, many production and distribution standards are seen as unsettled. These barriers make large-scale commercialization an issue. Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles explores the opportunities and challenges within the PEMFC industry. With the help of expert contributors, a critical overview of fuel cells and the FCEV industry is presented, and core technology, applications, costs, and trends are analyzed.
Technical Paper

Parameter Analysis and Optimization of Road Noise Active Control System

2022-03-29
2022-01-0313
The parameter setting has a great influence on the noise reduction performance of the road noise active control (RNC) system. This paper analyzes and optimizes the parameters of the RNC system. Firstly, the model of the RNC system is established based on the FxLMS algorithm. Based on this model, taking the maximum noise reduction as the evaluation index, the sensitivity analysis of convergence coefficient, filter order, and reference signal gain was carried out using the Sobol method with the data measured by a real vehicle on asphalt pavement at 40km/h. The results show that there is no significant interaction between the three parameters. Then, using the idea of orthogonal experiment, the simulation results of the control model are analyzed by taking the maximum noise reduction as the evaluation index. It is found that the convergence coefficient has the greatest effect on the maximum noise reduction, followed by the filter order, and the reference signal gain has the least effect.
Technical Paper

Construction and Test of Wireless Remote Control System for Self-Driving Car

2022-03-29
2022-01-0064
Aiming at the test safety problems in the early stage of self-driving cars development, firstly the virtual vehicle on-board CAN data acquisition module of the present project was designed based on virtual LabVIEW. Then a wireless remote control system for the self-driving car was constructed, which integrated the built virtual vehicle on-board CAN data acquisition system, the remote real-time image monitoring module and the remote upper computer control module based on ZigBee wireless transmission. It can execute the environmental awareness training and continuous and complex motion manipulation testing of the vehicle without relying on the driver, which can solve the safety problems in the tests of initial development of self-driving cars. Finally, the four-wheel independent steering electric vehicle was used as the self-driving test vehicle, and the wireless remote control system was tested on the double lane change type path and S-type path.
Technical Paper

Path Planning Method for Perpendicular Parking Based on Vehicle Kinematics Model Using MPC Optimization

2022-03-29
2022-01-0085
In recent years, intelligent driving technology is being extensively studied. This paper proposes a path planning method for perpendicular parking based on vehicle kinematics model using MPC optimization, which aims to solve the perpendicular parking task. Firstly, in the case of any initial position and orientation of the vehicle, judging whether the vehicle can be parked at one step according to the location of the parking place and the width of the lane, and then calculating the starting position for parking, and use the Bezier curve to connect the initial position and the starting position. Secondly, reference parking path is calculated according to the collision constraints of the parking space. Finally, because the parking path based on the vehicle kinematics model is composed of circle arcs and straight lines, the curvature of the path is discontinuous. The reference parking path is optimized using Model Predictive Control (MPC).
Technical Paper

Separation of Average Torque and Torque Ripple in PMSMs Considering Saturation, Cross-Coupling and Flux Harmonics Using Frozen Permeability Method

2022-03-29
2022-01-0730
The separation and analysis of the torque of the permanent magnet synchronous motor is of great significance for optimizing the torque output of the motor. Based on the frozen permeability method, the virtual work principle (VWP) or the Maxwell stress tensor method (MSTM) is often used to separate the torque for torque analysis. However, considering the influence of non-ideal factors such as motor saturation, cross-coupling and flux harmonics, there are differences in torque separation between the VWP and the MSTM, which has been researched and analyzed in this paper. Based on this, for the assisted airspace barrier design of a surface-inserted permanent magnet synchronous motor, to conduct theoretical research on the torque optimization design, this paper uses the VWP to separate the average torque and the MSTM to separate the torque ripple.
Technical Paper

Dynamic Durability Prediction of Fuel Cells Using Long Short-Term Memory Neural Network

2022-03-29
2022-01-0687
Durability performance prediction is a critical issue in fuel cell research. During the demonstration operation of fuel cell commercial vehicles in China, this issue has attracted more attention. In this article, the long short-term memory neural network (LSTMNN), which is an improved recurrent neural network (RNN), and the demonstration operation data are used to establish the prediction model to predict the durability performance of the fuel cell stack. Then, a model based on a back-propagation neural network (BPNN) is established to be a control group. The demonstration operation data is divided into training group and validation group. The former is used to train the prediction model, and the latter is used to verify the validity and accuracy of the prediction model. The outputs of the prediction model, as the durability performance evaluation indexes of the fuel cell, are the polarization curve (current-voltage curve) and the voltage decay curve (time-voltage curve).
Technical Paper

Fatigue Analysis on a Battery Support Plate for the Pure Electric Vehicle

2022-03-29
2022-01-0256
As the international community strengthens the control of carbon dioxide emissions, electric vehicles have gradually become a substitute for internal combustion engine vehicles. The battery pack is one of the most important components of electric vehicles. The strength and fatigue performance of the battery support plate not only affect the performance of the vehicle but also concern the safety of the driver. In the present study, the finite element model of a battery pack for fatigue analysis is completely established. The random vibration stress response analysis and acceleration power spectral density response analysis of the support plate for the battery pack are carried out, and the accuracy of the finite element model is verified by a random vibration test.
Technical Paper

Cold Start Emission Characteristics of Diesel Engine at High Altitude and Low Temperature

2022-03-29
2022-01-0563
The diesel engine is the core in the field of engineering machine power plants. While both at home and abroad for the cold start of diesel engine, the transient emission characteristics below 0 °C and above 2000m is almost a blank. Therefore, aimed at high altitude and low-temperature environment emission characteristics of cold start, this article has carried on the systematic analysis and research. In this paper, a simulation test system for the cold start of the diesel engine at low temperature at high altitude is established. The cold start experiments of a heavy diesel engine at different ambient temperatures (10°C, 0°C, -10°C and -20°C) and different altitudes (0m, 3000m, and 4000m) is carried out. In this paper, the gas emission of the diesel engine during the speed-up period of cold start is studied.
Technical Paper

Design and Experimental Characterization of a Parallel-Hybrid Powertrain for Hand-held Tools

2022-03-29
2022-01-0604
On the basis of small hybrid powertrain investigations in hand-held power tools for fuel consumption and emissions reduction, the prototype hybrid configuration of a small single-cylinder four-stroke internal combustion engine together with a brushless DC electric motor is built and measured on the testbench in terms of efficiency and emissions but also torque and power capabilities. The onboard energy storage system allows the combustion engine electrification for controlling the fuel amount and the combustion behavior while the electric motor placement instead of the pull-start and flywheel allows for start-stop of the system and load point shifting strategy for lower fuel consumption. The transient start-up results as well as the steady-state characterization maps of the system can set the limits on the fuel consumption reduction for such a hybrid tool compared with the baseline combustion-driven tool for given load cycle characteristics.
Journal Article

Performance Optimization Using ANN-SA Approach for VVA System in Diesel Engine

2022-03-29
2022-01-0628
Diesel engine is vital in the industry for its characteristics of low fuel consumption, high-torque, reliability, and durability. Existing diesel engine technology has reached the upper limit. It is difficult to break through the fuel consumption and emission of diesel engines. VVA (Variable Valve Actuation) is a new technology in the field of the diesel engines. In this paper, GT-Suite and ANN (artificial neural network) model are established based on engine experimental data and DoE simulation results. By inputting Intake Valve Opening crake angle (IVO), Intake Valve Angle Multiplier (IVAM) and Exhaust Valve Angle Multiplier (EVAM) into the ANN Model, and by using SA (simulated annealing algorithm), the optimized results of intake and exhaust valve lift under the target conditions are obtained.
Journal Article

Investigation on the Impact of High-Temperature Calendar and Cyclic Aging on Battery Overcharge Performance

2022-03-29
2022-01-0698
With the degradation of lithium-ion batteries, the battery safety performance changes, which further influences the safe working window. In this paper, the pouch ternary lithium-ion battery whose rated capacity is 4.2 Ah is used as the research object to investigate the impact of the high-temperature calendar and cyclic aging on tolerance performance. The overcharge-to-thermal-runaway test is performed on the fresh cell and aged cell (90% SOH). The inflection point of voltage for aged cells appears earlier than that of the fresh cell, while the voltage corresponding to the inflection point is the same for them, which means that the voltage at which lithium plating occurs is the same. However, the voltage plateau and the crest voltage before thermal runaway of aged cell are significantly higher than that of the fresh cell. Besides, ohmic heat, reversible heat, and side reaction heat make contribution to the thermal runaway triggering.
Technical Paper

Data-Driven Multi-Type and Multi-Level Fault Diagnosis of Proton Exchange Membrane Fuel Cell Systems Using Artificial Intelligence Algorithms

2022-03-29
2022-01-0693
To improve the durability of Proton-exchange membrane fuel cell (PEMFC) in actual transportation application scenario, the research on fault diagnosis of PEMFC is receiving extensive attention. With the development of artificial intelligence, performing fault diagnosis with the massive sampling data of the fuel cell system has become a popular research topic. But few people have successfully verified the diagnosis performance of these artificial intelligence algorithms on a real high power on-board PEMFC system. Therefore, we intend to make a step forward with these data-driven artificial intelligence algorithms. We applied four data-driven artificial intelligence algorithms to diagnose three common faults of PEMFC (each fault type has two severity levels, slight and severe). AVL CRUISE M was firstly applied for generation of simulation fault dataset to speed up the algorithm screening process. Based on the dataset, these algorithms are trained and optimized.
Technical Paper

Experimental Analysis of - 30°C Cold Start Process for an Automotive PEM Fuel Cell System

2022-03-29
2022-01-0694
Proton exchange membrane fuel cell (PEMFC) system is considered as one of the most popular power sources because of its high energy density, fast dynamic response and zero pollution. However, the start-up at low temperature (e.g. - 30 °C) is still a major challenge for its wide application due to water freezing in Membrane Electrode Assembly (MEA). In this paper, a cold start test process in an environment cabin with auxiliary heat was carried out for a full power automotive PEMFC system, including normal operation, shutdown purge and cold start processes analysis from -30°C. Rated power of this stack is 100kW at the current density of 1.4A/cm2 and relevant maximum output power can reach to 120kW. In order to reduce the damage of high potential to MEA, on-load purge with a current of 30A is conducted to removing extra water in stack for improving cold start ability. Based on corresponding control strategy, cold start was realized successfully within 110s.
Technical Paper

Cold Start Performance and Combustion Characteristics of Diesel Engine at Low Temperature and High Altitude

2022-03-29
2022-01-0444
Diesel engine starts stably under extreme conditions of high altitude and low ambient temperature, which is of great significance to national economic development, national defense force and user safety. However, there are few studies on cold start performance and transient emission of diesel engines with ambient temperature below 0°C and altitude above 2000m. A simulation test system for high altitude and low temperature cold start of diesel engine is established in this paper. The cold start-up of a high-pressure common rail turbocharged heavy diesel engine discharged from the fifth stage in China at altitudes of 0m, 3000m and 4000m at 10°C, 0°C, -10°C and -20°C is studied. The ignition mechanism of diesel engine at high altitude and low temperature is put forward. The combustion characteristics of diesel engine at variable altitude and ambient temperature were studied.
Technical Paper

Comparative Thermal Runaway Behavior Analysis of High-Nickel Lithium-Ion Batteries with Different Specifications

2022-03-29
2022-01-0706
High-nickel lithium-ion batteries extend the driving mileage of electric vehicles (EVs) to 600km without much cost increment. However, thermal accidents commonly occur due to their poor thermal stability, such as thermal runaway. To address the issue, a comprehensive analysis of the thermal runaway behavior of high-nickel lithium-ion batteries with different specifications is conducted. The thermal runaway process is divided into five stages based on self-heating generation, voltage drop, safety valve rupture, and thermal runaway triggering for the three tested cells. The three tested cells demonstrate similar behaviors during each stage of the thermal runaway process. However, there are still apparent differences between their characteristics. This study analyses the thermal runaway features from the following aspects: (i) characteristic temperature; (ii) the relationship between sudden voltage drop and characteristic temperatures; (iii) temperature recovery; (iv) thermodynamics.
Technical Paper

Routing and Security Mechanisms Design for Automotive TSN/CAN FD Security Gateway

2022-03-29
2022-01-0113
With the explosion of in-vehicle data, Time Sensitive Network (TSN) is increasingly becoming the backbone of the in-vehicle network to ensure deterministic real-time communication and Quality of Service (QoS). However, legacy buses such as CAN FD and LIN will not disappear for a long time in the future. Many protocols are deployed in the gateway and it is an important component in the security and functional safety of the communication process. In this paper, the recommended Electrical/Electronic Architecture is first given and the use cases for the TSN/CAN FD gateway are illustrated. Then, a TSN/CAN FD routing mechanism is designed and security mechanisms are deployed. The routing mechanism includes the protocol conversion module, queue cache module, and forwarding scheduling module. The protocol conversion module unpacks or packs the TSN or CAN FD frames according to the routing table.
Journal Article

Development of a Control System for Permanent Magnet Synchronous Motor Based on LabVIEW and FPGA

2022-03-29
2022-01-0732
With the strict requirements of harmful emission regulations, carbon peaking and neutralization goal, the internal combustion engine (ICE) industry is facing great challenges. Compared with pure ICE powertrain, hybrid powertrain has the advantages on fuel consumption and harmful emissions, which is more suitable for the market today. In series hybrid powertrain, because of the direct mechanical connection between ICE and motor, the motor can be used as an assistant in optimizing the performance of ICE. In order to realize the cycle-based or crank angle-based control of ICE, a high-frequency motor control system need to be built. Field Programmable Gate Array (FPGA) has the characteristics of high calculation frequency and high reliability to meet the demand. At the same time, the ICE control based on LabVIEW and FPGA has been realized.
X